3.378 \(\int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{9/2}} \, dx\)

Optimal. Leaf size=42 \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{8 f (c-c \sin (e+f x))^{9/2}} \]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(8*f*(c - c*Sin[e + f*x])^(9/2))

________________________________________________________________________________________

Rubi [A]  time = 0.093497, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.033, Rules used = {2742} \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{7/2}}{8 f (c-c \sin (e+f x))^{9/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2))/(8*f*(c - c*Sin[e + f*x])^(9/2))

Rule 2742

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^{7/2}}{(c-c \sin (e+f x))^{9/2}} \, dx &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{7/2}}{8 f (c-c \sin (e+f x))^{9/2}}\\ \end{align*}

Mathematica [B]  time = 4.42188, size = 115, normalized size = 2.74 \[ -\frac{a^3 (\sin (3 (e+f x))-7 \sin (e+f x)) \sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )}{4 c^4 f (\sin (e+f x)-1)^4 \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(7/2)/(c - c*Sin[e + f*x])^(9/2),x]

[Out]

-(a^3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])]*(-7*Sin[e + f*x] + Sin[3*(e + f*x)]))/(
4*c^4*f*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^4*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.139, size = 154, normalized size = 3.7 \begin{align*} -{\frac{ \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2 \right ) \left ( -1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) \sin \left ( fx+e \right ) }{f \left ( \sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{3}+ \left ( \cos \left ( fx+e \right ) \right ) ^{4}-4\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{3}-4\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) -8\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}+8\,\sin \left ( fx+e \right ) -4\,\cos \left ( fx+e \right ) +8 \right ) } \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{7}{2}}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{9}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(9/2),x)

[Out]

-1/f*(cos(f*x+e)^2-2)*(-1+cos(f*x+e)+sin(f*x+e))*(a*(1+sin(f*x+e)))^(7/2)*sin(f*x+e)/(sin(f*x+e)*cos(f*x+e)^3+
cos(f*x+e)^4-4*cos(f*x+e)^2*sin(f*x+e)+3*cos(f*x+e)^3-4*sin(f*x+e)*cos(f*x+e)-8*cos(f*x+e)^2+8*sin(f*x+e)-4*co
s(f*x+e)+8)/(-c*(-1+sin(f*x+e)))^(9/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(7/2)/(-c*sin(f*x + e) + c)^(9/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.13011, size = 309, normalized size = 7.36 \begin{align*} -\frac{{\left (a^{3} \cos \left (f x + e\right )^{2} - 2 \, a^{3}\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{c^{5} f \cos \left (f x + e\right )^{5} - 8 \, c^{5} f \cos \left (f x + e\right )^{3} + 8 \, c^{5} f \cos \left (f x + e\right ) + 4 \,{\left (c^{5} f \cos \left (f x + e\right )^{3} - 2 \, c^{5} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="fricas")

[Out]

-(a^3*cos(f*x + e)^2 - 2*a^3)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(c^5*f*cos(f*x +
 e)^5 - 8*c^5*f*cos(f*x + e)^3 + 8*c^5*f*cos(f*x + e) + 4*(c^5*f*cos(f*x + e)^3 - 2*c^5*f*cos(f*x + e))*sin(f*
x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(7/2)/(c-c*sin(f*x+e))**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{7}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{9}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)/(c-c*sin(f*x+e))^(9/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(7/2)/(-c*sin(f*x + e) + c)^(9/2), x)